Solved Examples on Logarithmic Models

Calculators: Logarithmic Models Calculator

Answer all questions using at least one approach.
Because the second approach: technology using the TI84/84-Plus is widely used, we shall use it to solve most of the questions, unless stated otherwise.

(1.) Determine a logarithmic function to model the data.
x y
$1$ $60$
$2$ $54$
$3$ $51$
$4$ $50$
$5$ $46$
$6$ $45$
$7$ $44$

Select the correct answer choice.
  • $f(x) = 60.73(0.95)x$
  • $f(x) = 0.93(60.73)x$
  • $f(x) = 60.04 - 8.25\ln x$
  • $f(x) = 8.25 - 60.04\ln x$
Round all values to the nearest hundredth.


Review the Second Approach: Step-by-step screenshots of how to use the TI-84 Plus to determine Logarithmic Regression Equation

Number 1-1

Number 1-2

$ y = a + b\ln x \\[3ex] y = 60.04169739 + -8.245225958 \ln x \\[3ex] y = 60.04169739 - 8.245225958 \ln x \\[3ex] y \approx 60.04 - 8.25 \ln x ...nearest\;\;hundredth $
(2.) Determine the logarithmic regression of the data below using either a calculator or spreadsheet program.
Then, estimate the x-value when the y-value is 5.2
Round your answer to one decimal place.
x y
$4.7$ $10.7$
$7.8$ $20.6$
$10.5$ $30.2$
$15.6$ $41$
$20.8$ $56.1$
$22$ $65.1$



Review the Second Approach: Step-by-step screenshots of how to use the TI-84 Plus to determine Logarithmic Regression Equation

Number 2-1

Number 2-2

$ y = a + b\ln x \\[3ex] y = -45.87438623 + 33.65272388 \ln x \\[3ex] y \approx -45.9 + 33.7 \ln x ...one\;\;decimal\;\;place \\[3ex] when\;\;y = 5.2 \\[3ex] 5.2 = -45.87438623 + 33.65272388 \ln x \\[3ex] -45.87438623 + 33.65272388 \ln x = 5.2 \\[3ex] 33.65272388 \ln x = 5.2 + 45.87438623 \\[3ex] 33.65272388 \ln x = 51.07438623 \\[3ex] \ln x = \dfrac{51.07438623}{33.65272388} \\[5ex] \ln x = 1.517689516 \\[3ex] e^{\ln x} = e^{1.517689516} \\[3ex] x = 4.561673338 $
(3.)


(4.)


(5.)

(6.)


(7.)


(8.)

(9.)

(10.)

(11.)


(12.)


(13.)


(14.)


(15.)

(16.)

(17.)

(18.)

(19.)

(20.)





Top




(21.)

(22.)